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LEITER TO THE EDITOR 

Dynamics of interfacial wetting near the roughening transition 
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t Physics Department, Temple University, Philadelphia, Pennsylvania 19122, USA 
5 Physics Department, Tampere University of Technology, PO Box 527, SF-33101 Tampere 
10, Finland 

Received 25 February 1987 

Abstract. Theoretical and computer simulation results are presented for the effect of 
fluctuations on the dynamics of layer growth during complete wetting. For example, in 
two dimensions we predict a crossover in the dynamics of the layer thickness W, from 
Lipowsky’s result, W -  for all non-zero temperatures in a lattice-gas system, to 
W - (In I)”’ at zero temperature (the roughening transition temperature) for intermediate 
times. Simulations of wetting in the three-state chiral Potts model give W -  t @ ,  where $ 
is 0.25 k0.03 for temperatures T 2 0.6 Tc ,  where T, is the critical temperature, while the 
effective exponent + monotonically decreases with T below this temperature. 

The physics by which layers grow on a substrate is a problem of interest in the fields 
of wetting, thin film growth and epitaxy (Pandit et a1 1982, Wortis et a1 1982, Venables 
et a1 1984, Cahn 1977). The complete wetting of a substrate by a film can involve both 
the potential of interaction between the growing film and the substrate, as well as 
fluctuations which cause the film’s interface to wander and become rough. 

Previously, Lipowsky (1985) analysed the late-stage growth of layers during com- 
plete wetting. In the limit in which the substrate interaction is short ranged (and so 
can be neglected for large time values) he finds the root-mean-square thickness of the 
wetting layer to be 

W (  t )  - t* (1) 

for large time values, where I) = (3d)/4, and dimension d < 3. In d = 3, W - (In t)’’’ 
(Desai and Grant 1986). The value of the exponent CC, is essentially due to the effects 
of long-wavelength thermal fluctuations, which roughen the interface. 

The question we shall address in this letter is, how universal is this result? We 
shall obtain results for different universality classes below. We consider the effects 
conservation laws, random impurities and, in particular, anisotropic surface tension 
and the roughening transition, have on this result. 

Equation (1) follows from linearising the effects of inhomogeneities in a dynamical 
interface model. The equation describes, for example, a liquid-vapour interface after 
the chemical potential has been changed suddenly from a region in the phase diagram 
where only vapour is in equilibrium over the substrate, to a region of liquid-vapour 
coexistence. The liquid wets the substrate, and the flat liquid-vapour interface is 
repelled from the substrate. We shall be concerned with how that interface becomes 
more diffuse with increasing time. 
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Let the substrate (and the interface at t = 0) be a surface located in the ( d  - 1)- 
dimensional X plane, which is orthogonal to the y axis. A single-valued variable 
l ( x ,  t )  gives the instantaneous position of the interface, relative to the y axis, as time 
goes on. For simplicity, we assume that the system can be prepared such that the 
interface, of area L d - ’ ,  corresponds to the y = 0 plane, at time t = 0. That is, the 
interface is flat initially, as compared to its final rough configuration, so that W( t = 
0)/ W( t )  << 1, at the large time t. This idealisation simplifies the analysis, and is of no 
consequence for large times. The dynamical interface model is (Lipowsky 1985, Weeks 
1980, Chui and Weeks 1978, Saito 1978, Allen and Cahn 1979, Bausch et a1 1981, 
Kawasaki and Ohta 1982) 

a [ /a t=D6F/S5+q ( 2 )  

where F is the free energy, D is a constant and q is the usual Gaussian thermal noise. 
(We neglect overhangs and bubbles, and additional factors required in general to 
enforce Euclidean invariance. This is allowable provided W / L < <  1, as it is above the 
lower critical dimension. The results for W ( t )  are of marginal validity at the lower 
critical dimension, which is d = 1 here, unless there is a random field present, in which 
case it is d = 2.) 

The free energy can be written as F [ 5 ]  = F s [ l ]  + V[l], where Fs is the surface free 
energy, and V gives the interaction with the substrate. Note that, for complete wetting, 
V is minimised by + a. For the remainder of this letter we shall assume that V is 
sufficiently short ranged that its effects can be neglected for late times. ( A  Ginzburg 
criterion determines the upper critical dimension for short-range forces as the dimension 
at which roughening sets in (i.e. three dimensions for the Ising model).) In that case, 
the late stages of complete wetting are determined by roughening, i.e. by fluctuations 
entering through the form of the surface free energy. This causes W ( t ) =  
(([i - t )  to grow. To obtain (1) with 4 = (3 - d) /4 ,  Lipowsky has assumed 
that the surface free energy is proportional to the surface area, i.e. 

Fs = U dxd-’[ 1 + (V5)2]”2 (3) J 
where the proportionality constant U is the surface tension. He then linearises around 
small 5 in ( 2 )  and solves for the correlation function which gives W. (One may 
linearise because the interface remains approximately flat during complete wetting, 
i.e. W/L<< 1.) 

One would expect that the large-time result of (1) might not apply if the long- 
wavelength properties of the dynamical equation, or the surface free energy, were 
significantly different from ( 2 )  and (3). For example, it is known that ( 2 )  follows from 
model A of critical dynamics (the continuum non-conserved Ising model) (Allen and 
Cahn 1979, Bausch et a/ 1981, Kawasaki and Ohta 1982). However, model B (the 
conserved Ising model) implies a much more complicated interface equation (Kawasaki 
and Ohta 1983, Kawasaki 1984). Nevertheless, if the conservation law is only enforced 
locally (in which case dynamics is limited by surface diffusion) one obtains a dynamical 
equation similar to ( 2 ) ,  but with (Mullins 1957) D +  LIT2. Linearising then gives 
IL= ( 3 - d ) / 8 ,  for d < 3 .  (At the dimensions where the I,LJ vanish, W(t)-(In f)”’. 
Additional results, and further details of the theory, are given by Grant (1987).) Of 
course, the exponent is different because this is a different dynamical universality class. 

Another example, where i t  is the long-wavelength behaviour of the free energy 
which changes, is given by the random-field Ising model (which provides a simple 
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model of the effects of impurities; a review is given by Imry (1984)). This is also in 
a different universality class from model A. That interface model corresponds to adding 
a term of the form 

Fh = 2 5 dxd-’  5”‘ dy h(x, y )  (4) 

to the surface free energy (Grinstein and Ma 1983), where h is a time-independent 
Gaussian random variable. Linearising this equation gives 4 = (5 - d)/6 for the late- 
stage growth of the wetting layer, in d < 5 .  It should be noted that metastable states 
have been observed to play an important role in the dynamics of equilibration of the 
random-field Ising model. The present results thus apply to a time regime which would 
precede that regime. 

These two examples where the growth exponent + changes are not surprising; 
conservation laws, or a random external field, change the universality class of a system. 
We shall, however, consider a rather different example for the remainder of this letter: 
an anisotropic surface tension near the roughening transition temperature TR. The 
roughening transition leads to significant changes to the long-wavelength properties 
of a system, and thus to significant changes in the late-stage growth of the wetting layer. 

Below TR (where TR = 0 in d = 2, and 0 < TR < Tc in d = 3), there is no longer an 
infrared divergence in 5. The ‘massive’ behaviour of the interface implies that dynamics 
is limited to large fluctuations, the rate of which is proportional to their free energy 
(as in nucleation theory). Roughly, then, the timescale over which such fluctuations 
occur is 7 - exp(constant) W“,  where n depends on the form of the free energy. Thus, 
W-(ln t ) ” ”  below TR. An exponent n = 2  corresponds to a quadratic free energy. 
Presumably the exponent would be difficult to determine numerically or experimentally, 
however. 

Above TR, we expect crossover behaviour which is affected by anisotropic surface 
tension over intermediate length scales (but not the strict limit 9’0, for which 
Lipowsky’s result applies). Furthermore, for our problem, this corresponds to inter- 
mediate times, but not t + CO. A model for ‘lattice’ effects which can be used for this 
purpose has been introduced by Grinstein and Ma (1983): 

F a  dd-’X( 1 + /V[1). ( 5 )  I 
This model, we believe, has only a limited validity for intermediate length scales near 
TR. In principle, a better approach for d = 2 would be to use the known anisotropic 
surface tension for, say, the Ising model (Avron et a1 1982). However such a calculation 
appears quite formidable. We have obtained W(r) from ( 5 )  by the following method. 
First, we expand F to quadratic order in 5, since we are only considering small 
distortions of the interface. The coefficient of the quadratic term is evidently a function 
of the magnitude of q, by translational invariance. We assume a power-law form for 
this coefficient, and determine the exponent self-consistently through the sum rule 
relating (12)  to 62F/612 .  (Details of this and other analyses are given by Grant (1987).) 
We eventually obtain W - (In t ) ” 2  in d = 2. (Explicitly, 4 = ( 2 -  d) / (3  - d ) ,  for d < 2, 
and + = O  in d = 3 .  If a random field is present, + = ( 3 - d ) / ( 4 - d ) .  I f  the order 
parameter is locally conserved, the + are halved.) We emphasise again, however, that 
these results only apply to intermediate length scales (and so intermediate times) for 
T b TR. For t + CO, the previous results, in particular Lipowsky’s, apply. To summarise, 
our theoretical results suggest that there is rich behaviour near TR: in d = 2, for all 
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T > TR (where T R  = 0), we expect W - ?’I4, as t + 00. However, for intermediate times 
and T a  TR we expect crossover behaviour due to the proximity of the roughening 
transition; our analysis gives W -  (In t ) ’ ” .  This would lead to an effectively tem- 
perature-dependent +, with $ close to 0 for low T, rising to a for high T, for analysis 
over a limited time regime. In the second half of this letter we shall present the results 
of a Monte Carlo simulation which tests these predictions. 

We have simulated the two-dimensional three-state chiral Potts model on a square 
lattice. This simple system is known to have a wetting transition, with a short-ranged 
‘substrate’ interaction (Huse et a1 1983, Selke and Huse 1983, Yeomans and Derrida 
1985). Furthermore, at low temperatures, the square lattice gives rise to an anisotropic 
surface tension. Therefore we can test the above prediction. The details of the model 
are as follows. Its Hamiltonian is 

where a variable ni = 0, 1 or 2 is associated with each lattice site i, A is the chiral field, 
J is the interaction constant, and the sums are taken over nearest neighbours in the y 
and x directions, respectively. The equilibrium critical properties are fairly well known. 
Three phases are stable: a ferromagnetic phase, a paramagnetic phase and an incom- 
mensurate phase. Huse er a1 (1983) have recently pointed out that this model has 
interesting interface properties when A is varied, and in particular they have discussed 
complete wetting. Wetting of an interface occurs as follows. The free energy of an 
interface between spilis taking values nL and nR (called a ‘- ’  interface) depends on 
( nR - nL) (mod 3), such that for a value of 1 it corresponds to a free energy F+ = F- ,  
but for increasing A, F+ decreases relative to F- . In particular, when 2 F+ = F- , a ‘ - ’ 
interface will split into two ‘+’ interfaces and hence become wet. At temperature T = 0 
this occurs for A = a .  

We have simulated the kinetics of interfacial wetting in the model with Glauber 
spin-flip dynamics. Various values of T and A were studied within the wetting region 
of the phase diagram. Lattices of size ( N + 2 ) x  N =  104x 102, and 206x204 were 
prepared with the y = 1 row fixed to n, = 0, while the y = N + 2  row was fixed to 
nN+Z = 2, so as to create a flat ‘-’ interface at the y = ( N  + 2)/2 plane, initially. Periodic 
boundary conditions were used in the x direction. There were 100 runs done over 500 
Monte Carlo timesteps for each temperature on the small lattice, while 100 runs over 
5000 Monte Carlo steps were done on the larger lattice. The dynamics of the growth 
of the wet layer was measured by W(t)  = N\’**)(t)-  N p o ) ( t ) ,  where is the 
average number of spins per row in state y with boundary conditons (a, p )  on the y 
axis. After the early stages of wetting, this W( t )  is twice the root-mean-square position 
of the interface described by the above theory (because the ‘substrate interaction’ is 
short ranged). The total energy of the system was also calculated. 

In  figure 1 we show two representative configurations of a system which was 
prepared with one flat ‘-’ interface. At very early times the interface is rapidly wetted 
by one layer of the third degenerate state. During this early stage, vertices (where the 
three phases meet) play a role in the dynamics. Since the total energy of the system 
was only found to change significantly during those early times, this stage seems to 
be primarily energy drives. At later times the observed occurrence of vertices is 
negligible, and the kinetics acts to make the two interfaces rougher as time goes on. 

The time dependence of W(A = 0.4, 1 )  is shown in figure 2 for temperatures T / J  = 
0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 (the critical temperature is Tc(A=0.4)= 1.05J). The 
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Figure 1. Two representative configurations are shown at T = 0.65 and A = 0.4. ( a )  shows 
the early stages of complete wetting, ( b )  the late stages. 

0 140 280 420 
t 

Figure 2. W( f )  against I is shown for T/J = 0.2, 
top, over 500 Monte Carlo timesteps. 

0.3, 0.4, 0.6, 0.8 and 1.0, from bottom to 

dynamics of wetting clearly separates into two time regimes: early-time wetting of the 
first layer, and  late-time complete wetting. The wetting during the early stage is rapid 
for temperatures T20.35, and a strong temperature dependence is evident in figure 
2. Indeed, the T /  J = 0.2 curve only consists of that early stage, for the time regime 
shown in that figure. Thus wetting of the first layer involves strong temperature 
dependences and  vertex dynamics. The present theory does not describe the early 
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stages of growth; presumably, this early stage involves the short-ranged ‘substrate 
interaction’ (i.e. the repulsive force between two ‘+’ interfaces) which we have neglected 
to obtain a late-time solution. 

The growth during the later stages is significantly slower. I t  is this aspect of the 
simulation which the theory discussed above addresses. Figure 2 shows a pronounced 
crossover from slow late-time growth at low temperatures to faster late-time growth 
at high temperatures, as we predicted above. We note that this temperature dependence 
of W is due to the limited time regime over which our simulations have been performed. 
For t + 00, we expect this crossover to only take place at T = 0. We have quantitatively 
characterised this effect by a power-law fit to the data from the larger system, namely 
W (  t )  = WO+ Ct’, where WO is the value of W at which the crossover to late-stage 
complete wetting occurs (that is, WO= l ) ,  and C is a constant. ( I f  we fit with WO= 0, 
then i,b = 0.2 at high temperatures, while $ becomes smaller as T is decreased. The 
physics of the problem requires WO= 1,  however, since we observe a clear distinction 
between early and late-stage wetting. Fits are also better in that case.) At high 
temperatures, T 3 0.63, the effective growth exponent is approximately independent 
of temperature, being JI = 0.25 0.03, which is consistent with Lipowsky’s prediction 
of i,b =+. Below this temperature, however, $ becomes smaller. (For example, $( T = 
0.4 3) = 0.12, and $( T = 0.33) < 0.05.) This effective dependence upon temperature 
close to the roughening transition is in agreement with the theory presented above. 
(There is no special significance to the temperature T = 0.63, that crossover temperature 
depends on the detailed form of the anisotropic (+ for the chiral Potts model, as well 
as the time regime over which we analyse our data.) Other tests of theory, simulations 
in different regions of the phase diagram, and a study of the effects of wetting on the 
kinetics of ordering have been conducted and will be reported elsewhere. 

To conclude, we have presented a study of the dynamics of complete wetting. A 
dynamical model was used to analyse the effects of fluctuations on layer growth near 
TR. The results of this theory were then compared to computer simulation, where we 
verified our prediction of strong crossover behaviour due to anisotropic surface tension. 

Thanks are due to Jim Gunton and Ed Gawlinski for useful comments and discussions. 
This work was supported by NSF Grant DMR-8312958, ONR Grant N00014-83-K- 
0382, and the Academy of Finland. 
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